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I. INTRODUCTION

This work is the continuation and the end of a cooperative effort made by the following
persons:

Hieu HAMINH, Professor at INP, Toulouse, France,
Dany VANDROMME, Professor at INSA, Rouen, France,
Wolfgang KOLLMANN, Professor at UC Davis,

John VIEGAS, Research scientist at ARC,

Morris RUBESIN, Senior Research scientist at ARC.

L A A

" to develop a second order closure turbulence model for compressible flows and to implement
it in a 2D Reynolds-averaged Navier-Stokes solver. This work has been initiated in the
early 80’s while one of the authors (DV) was NRC Research Associate with the Ames CFD
branch. During the subsequent years, the NASA grant NCC2-186 allowed the continuation
of this work through repeated funding from the Experimental Fluid Dynamics branch, lead
by Dr. Joseph MARVIN.

From the beginning of this work where a k — € turbulence model was implemented
in the bidiagonal implicit method of MACCORMACK (referred to as the MAC3 code) to
the final stage of implementing a full second order closure in the efficient line Gauss-Seidel
algorithm, numerous work have been done, individually and collectively by the individuals
mentionned above. - =

Besides the collaboration itself, the final product of this work is a second order closure
derived from the Launder, Reece and Rodi model to account for near wall effects, which
has been called FRAME model, which stands for FRench-AMerican-Effort.

Another benefit of this collaboration was the proposition and extensive testing of
various turbulence model corrections to account for strong compressibility effects. Among
the various contributions in this field, the following main lines has been worked out:

— The modelling of the pressure and density correlations based on, among other as-
sumptions, the polytropic assumption. This approach has been initiated early in the
70’s by Rubesin, and taken over by Vandromme.

— Kollmann and Vandromme have introduced the compressible version of the € equation
with specific compressibility corrections mostly based on the mean velocity divergence.

= Later, the various proposals based on the compressible dissipation made independently
by Sarkar and Zeman has been tested also by Viegas and Rubesin and compared to
the various Rubesin proposals for the compressible mixing layer.

— More recently, Vandromme continued to work on new models for the pressure dilata-
tion in presence of strong shocks. This work, which has been conducted during a work
at the Center for Turbulence Research with Zeman aimed also to cross-check earlier
assumptions by Rubesin and Vandromme.

In common with all the contributions which have been done under the ARC-UCD
grant, the authors must recognize that they spent a lot of time to play with the numer-
ics, rather with the strict model of physics of turbulence. That confirmed, as a general
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conclusion that:

— a turbulence model is never independent of the numerics,

— there is no hope to develop a universal model of turbulence, the best to be expected
being a well-calibrated model for a given type of flow,

— a turbulence can not be used as a black box without a minimum of expertise

During this last summer period, two different problems have been worked out. The
first was to provide Ames researchers with a reliable compressible boundary layer code
including a wide collection of turbulence models for quick testing of new terms, both in
two equations (k — €, k —w?, ¢ —w, k — kl etc...) and in second order closure (LRR and
FRAME). The second topic was to complete the implementation of the FRAME model
in the MAC5 code. The work related to these two different contributions is reported in
the following two chapters.

II. NUMERICAL PROCEDURE FOR BOUNDARY-LAYER EQUATIONS

II-1. INTRODUCTION.

Originated by PATANKAR and SPALDING [1], the numerical procedure presented here
contains several specific modifications, concerning more particularly

i) the treatment of source terms,

i1) the slip false grid points,

#i) the boundary conditions, and

iv) the numerical algorithm
used to solve the coupled partial derivative parabolic equations.

The procedure concerns a set of partial derivative transport equations including:

o Continuity equations:

0 1 0,, _
a—XpU + T_"'E(r pV) =0 (II - 1)
e n transport equations:
0 5} 1 0/ om 0%n
Vgt Vgt = 5o 5 (D) 5 1-2)

II-2. TRANSFORMATION OF THE EQUATION SET

To avoid the continuity equation (II-1), we can define a stream function y as:

-3
we-2(3) a1~
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Therefore, all variable function ®(X,r) will be considered as function of the VON
MISES variables z and ¢y — &(z,v), = being the longitudinal coordinate on the internal
boundary of the flow field (Fig.1).

-

t

Figure 1

* Remark: Neither the internal boundary I nor the external boundary E is necessary a
streamiline, except if the equations are no longer parabolic.

The elementary flow rate through the crown area ds = 2#r.dr is:
dQ@ = 2r.r.dr.p.Ucosf = 2mcosf.dy

(B(z) being the local angle of the velocity vector).
Assuming that <1 — cosf ~ 1:

X=X(z4) r=r(zv) (IT - 4)
it r=X  dp=pUrdr
(Gx).=1 (F)i=
@) v @,
(5x).= (&), v (5),
()= v,
=5 2(5) ) = m o (5) )
“ea (),
= et gl o(5) .
=g lroren(5) ],
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Therefore, the equation (II-2) becomes:

pU%{;’- = pU% [pUrzaD(%)z]z + Se
g—‘f = % [,)U,ﬂ“i)(%i-’)z]z + f—(“} (II - 5)



Let us introduce now new variables defined as:

P — ()
Yve(z) —Yi1(z)

r=>z* ==z Y =2>w=

w is function of ¥ and z (through ¥; and ¥g).

(%%) ¢ (%) = ¢E1—¢1
(Qw_) _ Y- [51{)5 _ 6¢1] 1 oy
o/y  (YE—9r1)? L 0§ o¢ g - Of

92/ 82 0z T B Oz
2% 1 (8 Oy Opr\ 0
= (EF)w " (s -¢,)[ ad;l +“’('67E _79?1)] (E)z-
(Q‘I_’) _ 0% 9zt 0% B
50/, 9 3% T Bw 0%

(3@) 0% 0z* 0% Ow
¥

1 od
" We — 1) (E)z

21001008
oyl oyl  (Ye—vr)owl ¢
-1 _8_[ K 5_4’]
" (Yg — 1) 0w (e — Y1) Ow
1 0 od
— —————— — K__
(YE — 9¥r1)? Ow [ 3w]
with:
K =r®pUD
Defining:
“ 1 dyr
Mr=pVi=——. 0L
r dz
mg=p Vg = —-L-M
rg dr
0d 1 y y o od
(32:") * WE—v1) ["?m’ Fwlrgrhe - "’m’)] (E)
Ll 0 fa 08, e
"~ (YE — 1)t Ow [r pUD&u] + pU
od o® o ¢ 0%
(5) . *a+b(5;),. = 5 (o) +4
o= Tymy - TETAE — TIM] e pUr?eD d=_‘5'3
YE — Y1 YE — ¥1 (Ve — ¥r1)? pU

(IT - 6)

(IT - 7)

(IT - 8)

(IT - 9)

(IT - 10)

(IT - 12)
(IT - 13)

(IT — 14)



II-3. ORIGINAL EQUATIONS TO BE SOLVED

I
32 PU) + 6y(pV) =0

’3[0?9_5+‘7%%]=§y[u%%]+%( ) - o
R | e
y S nfl”—;—l.ﬁ.fr%%
n 7—1'57%_6[7

— | ———— — — ——

n-1C, T 0y (n-1)C, T 0y
P Uuw ol | (80
(n—1)Cp T2 "0y

+

o5 +990) - F(ts o)

7Y
]|

% _ 2 au
2 _ % —
(v 3 k) + 2C4puv——ay ]
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(IT - 16)

(IT - 17)

(IT - 18)
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Oz Oy oy Oy
_Laur 2 2
UGy [_30‘_3ﬂ]
-cl,si(ai_gic)_%pe (1T - 20)
_ €5 2
p,}f&(w 3k)
k3/2 _€ ~ 2.
= ooz (" - 58]
LOTb - 0u0) O [y kP dav
05 + 75y ) = 5 l(Cr e+ ) ]
~ U oU - 00U
+pvi—|(a = 1) + Bp7— — 1Pk o~
8~y[ ) Oy ay] (IT —21)
- clp%a*v _ pef, D
k372 é Filif
— ST 2 2y
% [C3péuv+C’4p(u v )3y]
[~ 06 ~ O€ 0 _k.v? O¢€
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In the successive transformations:

(z,9) = (§,4) = (z7,w)

02 _0%¢ 0% 9 _ 02
az 0t "oy ay oy

p[U?E + V-a-f] = p[U%%)— - pUVgZ + vaai] 9%

Oz oy
(28) =02 2] (2
0 pU g

' = W — 1) o

(2)



Therefore, the general form for all equations to be solved is now written as:

M M
o[22 V('M’k]_z3[pk,a‘l"]+2Aka“"+zm,¢,+wk (T - 23)

oz dy Oy Oy
acpk 0% _ M 8., 0%
N
M
ZDH o (IT —24)
+ Z Rii. @1 + Q&
=1
my meg —myr
A = B T ——
YE — Y1 YE — i
P U.sz Akl
C Dy =
M W —vr)? M e - i
_ A &
Ru = p.U Qk = p.U

II-4.- THE BLOCK-SOLVER TECHNIQUE.

The previous P.D.E. could be solved by using a Block-Solver technique (See Ref.[2]).
This technique is presented as following;:

Denote ®; = ®; j 11 & = &, ;— and integrate over V; (Fig.2):

//'da: daa—:Ax-;-(w;H —wi_ 1)(gf)i

Figure 2



Variation of @- with w:

Or

(52~ ).

' %z(%)i+(w—Wi) Wil — Wi

Q41— P
Witl — Wi

<I>=‘I>,-+(w—w,')

(3).- G

od o9
Fr (5;)-'—1 +(w-wiz1) Wi — Wi_1
Pd; — P,
&=y + (w—wis))———
Wi — Wi-1
(6_<I>) _F-%; %%
or/i Az ~  Ar
Hence:
2 od o0d
A.’L‘(W.‘.H —w,-_l) /vi d.’l:.dw.-éz - (3:;):
2 -
= ro _wi_l){/d‘a.é - /dw<I> }
2 - dw® o dwd - dwd®™ . dwd™
- Ax(w.'+1 —w"—l){ @i * wi - @ ® _v/‘;i }
Finally:
2 1 i Wi i+1 — Wi
(0_)_ = {4 gy,
oz/i dAz Wit1 — Wi-1 Wil — Wil (I1 = 25)
- Wi — Wy, - - W41 — Wi
T —TEh 3T P ————
lwip —wiog ' *luwin —wi-x}
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. . d .
e Discretization of: A.—, with A = constant:

Ow

Az(w~+12—w- 1)// dm.dw.A.gi’ (A g%),
(Ag—f) ——A:c / de / de

(A6_<1>) 24 dw /“’*‘ 6<I>

Ow /i (w +1 — Wi _1) i
_ 24 (D: - Q:—l ) - ¢,+1 o)) .
 (wip1 —w -1){w - Wiy (wi —wi) + ot — @ (Wit1 w-)}
Finally:
0% (I)i+1 -¢ -1
(A'aw)i_A'w.-H—w_l (II—26)
) . 0P .
e Discretization of: B.wa—;, with B = constant:
—//dxde—-aPh’ = Bw@)
Ow
Wy w i 1
Ow’/i  wip —wj 1 5
Finally:
0% B Swi +wi-1 i + wisr
Bw—) =—=—{-9,_ .y . _
( “’aw).- 4{ b o, Bt } (IT - 27)

o Discretization of: 33; (C%)
0.0 0
5[4 [z (em) = (€3],
2

(€3] = oo (8 o () )

Finally:
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[(Cg_i-)]. = (wi41 it.«.v,'_l){ + i (%%)

- @(C‘ G Cit Ciy ) (I —28)
Wit1 — Wi Wi —Wi-1
~ (Ci+Cina
+ (I)H-l (w.'.H — Ws )}
e Discretization of: D,(w)%;{z;
1 0% 0%
v // dz.dw.D(w) 7= = (Da—ﬂ),-
0% 2 wi od Wi od
(Da_g),. = o — @i {/; D(w)a;.dw + «/;.- D(w)gw-.dw} (IT - 29)

Finally:

(D%‘;—)i = %'_(wi+'11— w-_) {(D.‘l +3D,)(®i — ®i—1) + (Dig1 + 3Di)(Pig1 — Q'.)}

The finite-difference equation.
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1 Wi wy = Wy
_1_{+¢§_1L_i_i_ + 30k 4 @b, LT

Wi+l — Wi-1 Wi41 — Wi—1
Wi — Wi - _ Wil —Wwj
_pho Tl gpk- q)fH_'i'__._'_.}
Wil —Wi-1 Wil —Wi-1
k
q)H—l q’a 1

B 3w +wi— 3w; + wit1
(Bf gy, dten g g Bate )

Wit1 —Wi-1 Wi4l —Wi-1
M i l
Ci+C Ci+C
= . E { +®i_ e &l
(wz+1 —wx—l) =1 i Wiel Wil — Wy

i Ci+Ci
- % (S.: CH wi iw.‘-11)}

+£11(w,+1—w, 1)Z{(D _; +3D)) (@ - &' _) + (D!}, + 3D! )(‘I’.-H—(I’f)}

+ ZRi.q:ﬁ +Q;
=1
(IT - 30)
k=1,2,..M

By multiplying by (wit+1 — wi-1), we obtain:

1
ZZ;{("" —wim1)®5 |+ 3(wir1 —win1)Of + (Wit —wi) @y,

(i = wim)BET, 4 B(wis —wist)8E + (wirs — wi) B ]
B
+A(®E, - O )+ — { <I>f_1(3w,~+wi_1)—<l>f(w,'+1—wg-1)+‘§f+1(3w,'+w,'+1)}

i{ cl+cl +qn,+1,0_.-'j;€_f+_ <1>’(01+Cl CHC:“)}

-1 i — Wi Wi+l —

Wi — Wi-—1 Wi41 — Wy

(IT — 31)
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Otherwise:

kk kk kk
k Wi wWi-1 _ _Z ] ‘ _ C + C D -1 + 3D
+ (I)i‘l{ 4Azx A 4 (Bw; +wi-1) Wi — Wi—-1 4 }
3(wis1 —wi-1) B [c.*" +Ck,  CH 4 CH
k i+1 i—1 2. . [} 41 i—1
® { 4Az 4 (Wit +wiz1) + Wig1 — Wi t Wi — Wi-1 ]

, Dt + D%,

1 — Rix(wit1 — w.‘-l)}

ot 1 Ot _ Dl + 3Dk

Wi+l — Wy B _ ) _
+ ¢,+1{ 4A + A + 4 (3(0; + w!+1) wi+l w' 4
Dkl 3Dkl Clck C
+ Z ! { 1 + . + (i) }
£k —Wi-1
M
CHr+cily O+ ct,  Di,+DE
+ Z @f{ 1 L L — Ru(wit —wi—l)}
I# Wil — Wi Wi — Wi-1 4
+ 3D¥ C"" + CH
+ Q' 1+1 [ 4+
I;ézk +l{ 4 Wi41 — Wy }
Wi —Wi—1 5 —k _k Wit+1 — Wi o _k
= Qu(wit1 —wim1) + —— ¥i0) + a7 (Wit —wi1)® t A 2it1
(IT - 32)
Let us call: B
_ Wik TWE .
ZA = 4Az A 4 (w:+l + 3“):)
Wi — Wi-1 B
=2 A S (w ; IT - 33
Zg Ty TAT 7w 3 ) ( )
3 B
Zc = (4A_z - Z‘)(Wi—l — Wit1)
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To apply a block-solver algorithm, let us put this system into this form:

Cizi-i+Aizi+BiXij1 =y

with 2 <7 < N;. Except:

Az +Brz2+Crzz=u

Bn.zn—2+ Cn.zN, + AN.IN = YN

(IT - 34)
(IT - 35)
(IT — 36)

In (34),(35), (36) A;,B;,C; bring (M x M) matrices, z; and y; being (M) vectors
(M =number of equations to be solved).

Then, the matrices A;, B; and C; are:

(_[eect, oitvoly) Dl -l
Wit1 — Wi wi —Wwi-1 | 4
AF + R¥(wig1 ~wic1) —Za  forl=k | (11 — 37
| ety ettty b, - ok,
Wit1 — Wi Wi —Wwi—1 | 4
L + Rf'(w,'“ - wi_1) for I # k J
Ck + CH DX 4 3DX
+u:+ ::]+ "HZ e+ Z4 forl =k
Bf = kLT (II - 38)
' CH 4+ CH DX 4 3DM
+ |+ l+1+ t+1+ L] forl?ék
Wit+l1 — Wi 4
cH4cH DX 4 3DH
B s 5 W = Bk N S S
Ct = Wi — Wi-1 4
P CH 4+ CH DX 4 3DH
P = ks S S Y
Wi —Wwi—1 4
1 - - -
yr=-— A [(wi —wi1)®5 4 3(wit1 —wic1)®7F + (wig —wi)<1>,-+k1] (IT - 39)
— (wig1 — wi-1).Q%
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II-5.- BOUNDARY CONDITIONS.

The previous relationships are only valid for all points ¢ from 3 to (N — 2). We have to
modify the previous results for the point 2, assuming an integration to the wall, and for
the point (IV — 1), assuming an integration to the outer boundary.

c¥l+cH  3cH4cH B w3 + w2 — 4wy
Ak wy—wy z(wa_w2]—A—4(4w1+w2—w3)—- 44z
2
4Dkl Dkl _ Dkl
1 ¥ 42 3+ R (ws 4wy — 2wy)
(II - 40)
Ckl Ckl B -
3¢y +C5 __A__(w3+3“,2)_.w3 w2
B =] w2-—w 4 40z (IT - 41)
2= 3DX 4 Dk
2 3
4
CH +Ck
C} = { % +24 - Blun +wz) - (D 4 Df')} (IT - 42)
2 —wi
1
y; = -1 [(wa —w2)®7F + (Bws + w2 — 4w1)®7* + 4(w2 —wl)q’fk] (II - 43)
— (w3 + w2 — 2w,).Q;
c+Cy_, 3cy +ck
A = WN — WN-1 2(WN ““’M (IT - 44)
™7 ) 4D¥ + DY — DY 3w
1 2 1 2
VTN W | RY (G — wh, —wn, )R O, = o,
4 ! : 4Azr
3Cy +cCl B —
_ZN T ZN, + A+ _..(3“”\,1 +WN2) M
ck =) 2wm —wn, 40z (II - 45)
Ny 3Dk 4 Dk
_3Dn, + Dy,

4

ckl +Ck
B’,ﬁ,:{ —i—&_zA Bwy +wn,) - =X—""(D¥ + D} } (IT — 46)

! WN —WN-1 Az
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—k
= 4(wn —wn-1)PyN ]
! - Iy + (dwn —wn, —3wN,)<I>N_1 +
v, =— E[(WN—I wN-2)®xN",

— (2WN —wN, —WN,).QN-2 (IT - 47)
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IIL.- IMPLEMENTATION OF THE COMPRESSIBLE SECOND ORDER
CLOSURE IN THE MACS5 CODE

From the various attempts which have been worked out previously, a simple method is to
be used for the treatment of the source term collection, to ease their numerical treatment.

III-1.- The FRAME model

The second order moment closures (or Reynolds stress models) are currently the most
general one-point correlation models from the point of view of physical theory. These
models require the solution of additional field equations for the complete set of Reynolds
stresses pv,vg, the turbulent heat flux vector pu,T” and, frequently a scale equation
which can be ¢ or w?, similar to that one used for the two-equation models. These models
are obviously more complicated than the eddy viscosity based models. One of the most
important physical properties contained in these models is however a stress relaxation
property which cannot be correctly represented in the eddy viscosity models.

From a simple manipulation of the instantaneous Navier-Stokes equations, derivation
of a transport equation for the Reynolds stress components yields:

a _ »n » a Y A —_n onow -, - » 0l
a(p v,Ug) + Foe [p VoV Uy + P UVaY, + bay Vgp' + 85y VP — #(Sayvg + S'ﬂ.,va)]
2

5= Ovp 5 Ovg OV, vy
=—p [UQ,'U,7 5;—7 + vgv, '5;] +p (61’,@ + 31:0,)
N P R B e B K 4
i |Ses . Sﬂ.,axv] Veda; " 97
(ITT -1)
By taking advantage of the contracted index convention (a = # and summation) and

dividing the resulting equation by 2, we obtain the exact form of the transport equation
for the turbulent kinetic energy:

9, _ 9 (.~ el )
b—t(pk) + 5;—(;) vy k+pvk+o,p —p vaSa.,)
! —_— (111 -2)

Ov,,

av” —_ aﬁ
a — 1 Sayz >

P v, v- %a p' v
a " Ya
10z, 0z 4 0z4

The modelling of the turbulent stresses and fluxes introduces a lot of new terms, so far
not defined by experiments. It is not possible at this time to reach definitive conclusions
on the validity of all these closures. For this reason, in the following, emphasis is put
on the modelling of the Reynolds stresses whereas the remaining turbulent fluxes will be
handled with a general anisotropic form of the gradient approximation.

This remark seems very restrictive, but in fact the lack of experimental results makes
the Reynolds stress modelling problem sufficiently complex to delay the equivalent treat-
ment of others fluxes. Practically, the application domain will be restricted to compressible
flows with moderate heat and mass transfers, although extension for combustion flows has
been made already [3].
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Let us return now to the open transport equation for v, vy (eq. (III-1)) in which all
new unknown terms need to be modelled.

This equation can be modelled by extending the incompressible models of Launder,
Reece and Rodi [4] and Hanjalic and Launder [5] to compressible conditions, i.e. using
Favre decomposition, introducing the non-zero divergence terms that were eliminated in the
original models and accounting for the non-zero mean mass-weighted fluctuating velocities
(6]. In this report, we restrict the discussion to the important points of modelling.

”» n »

e turbulent flux of Reynolds stress : = pv,vgv.

Starting from the exact transport equation for pv:v;v’,”, it is possible, as shown by
Hanjalic and Launder [5], by neglecting diffusive and convective terms, to obtain the
following form:

—p Vo, =C, p =

LR ] (»” ” n n n n ”)

v v VLU, + VLU vl v, v
a&axaﬂ‘y ﬂ66x601~( 7661,601,9

(IIT - 3)

”

This form conserves the symmetric character of the third order tensor v:;v;v.r but, for
practical purposes, a simpler form, suggested by Daly and Harlow 7] seems to produce

results of similar quality.

_w ko= 9 5
—pU VgV = C;p;vv"’&é;;vavﬂ (IIT - 4)

e pressure diffusion: = @637 + v;p' Oy

Most people neglect pressure-induced diffusion term, mainly due to the lack of exper-
imental information. The measurements of Irwin (8] in a wall jet suggest that this term
cannot be very important. Furthermore, some authors argued that the pressure induced
diffusion, if non negligible, would act to destroy the symmetry character of the triple
correlation term and support the use of the compact form given by equation (III-4).

7. A

: s 90 (= g
e viscous diffusion term: = _-('3;: (va pSpy+vgp Sa,.,)

Assuming that a) the correlation between viscosity fluctuations and other quantities
is weak, b) the product of density correlations with velocity gradients is small. Then the
development of the molecular diffusion term is written as:

visc. diff. = -0 (“3%7”3‘7;’) + 6(:7 (wos gﬁ +1v; av;;)

v ——
Oz, 53:1:.,

If the flow is incompressible or solenoidal (weak compressibility, Dussauge [9]), the
viscous diffusion can be written as:

C 0 0 7
visc. diff. = Em_,("a—%"‘*”ﬂ (III - 5)
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6’0 av'@
31:p 024 2.

In strongly anisotropic flows, i.e. in situations where second order closures are needed,
this term is a central piece for explaining the redistribution mechanism between Reynolds
stresses. To model this term, the approach is an incompressible-like technique, which
consists in integrating a Poisson equation for the fluctuating pressure. The result of this
integration, transposed to variable density flows is written as:

* pressure strain correlation: = p'(=—=

, O0ur Qv Cz+8 2 8C; =2, —~— 2. =~
p (a—m; Bxa) (Pag - §5aﬂPk) BT (Dap — 35aﬁD)
30C; -2 _, — — 2
———5-25——;3k Seg — C1f1 pz (vap = 36ask)
3 (IIT - 6)
+=—(Capz (00 — 58ask) + Cu(Pap — Dap)
3va 6vﬂ 2, 0uy
+Cs (G2 + 52 — 3ez))
where ~
BoBe—puv, Pe_B (ITI = 7)
=F = TP Org .
and o%; 0%
— 7" ”_UE- n ”—_a _
Pos = —p (v, ¥r + vy 76357) (IIT - 8)
=~ — » ” 617 » » 8v~
Das=-5( avyaxg + vy 78—:3‘5) (IIT-9)
-25
f= m‘;/f)—o (IIT - 10)

The first two lines of equation (III-6) represent the redistribution mechanism in the
flow field far from the wall (Launder, Reece and Rodi [4]) and the last two lines of this
equation take into account the wall influence in this mechanism (Hanjalic and Launder
[5]). The effect of this last contribution is twofold:

* it has an opposite effect to the classical return to isotropy term of Rotta [10].
* it acts also as a rapid term to increase the anisotropy of the stress production terms.

It must be emphasized that the transposition of an original incompressible technique
to a variable density situation is not free of uncertainties. For instance a corrective term
appears in the development of the non linear contribution due to the use of Favre averaging
(see [11]). Also, the fourth rank tensor, corresponding to the high Reynolds number rapid
term does not possess all the mathematical properties of its incompressible counterpart,

e.g.
2 # b2 #0
Finally, the whole term can be considered as a pure redistribution contribution only

in the case of solenoidal turbulence field. Otherwise the bulk deformation is a source/sink
term (Dussauge [9], Vandromme [12]).

or
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The real weakness of this approach is the use of an incompressible approach (Poisson
equation) when the flow is compressible. It would be more justified to introduce a wave-
like operator to evaluate the fluctuating pressure field, like Feiereisen [13] tried from the
results of his direct simulations. Unfortunately, the results, which have been obtained are
nearly identical to those of the incompressible formulation.

7 op —=0p
b2y Pz,
T g T o
According to Rubesin’s proposal for the one-equation turbulence model, that term
can be treated like compressibility terms for two-equation turbulence models, assuming a
polytropic behaviour of the fluid (see chapter 6).

* mean pressure gradient term: =

* viscous dissipation

It has been shown, in incompressible case [14], that the dissipation tensor is diago-
nally dominant and nearly spherical. The ratio of the deviatoric to the diagonal terms
being related to the Reynolds stress anisotropy, the dissipation is described with a com-
pound function which is scalar in the high turbulent Reynolds number zones and allows
an anisotropic dissipation elsewhere (wall vicinity for instance).

~, 2
€af = Z(v Vpfa+ (1= f2)58ask) (IIT - 11)

with
fs =1/(1 + Re¢/10) ; Re: = k?*/ve
Nevertheless, some of the "slow” pressure strain terms may also represent anisotropic ¢;;.

To summarize the assumptions made above, the modelled Reynolds stress equation
can be written as:

_ Th 3] T k ’,,‘-’,, 0 —
( v vﬂ)+ (pv‘Y vavﬂ C,P v v&a ﬂ_a_-vavﬁ)
— C +8 2 SC 2
=Py — —2—(Pas - §5aﬂPk) - (Daﬂ - —5aﬁD)
3OC 9 o 2
——525—-ks(,,9 Clp (vavy — 5aﬁk)
% - 0p (I11 - 12)

( a +vﬁa ) ﬁk(:;’[;fs'{’(l—fa) 6aﬂk)

ki = P, _ Do
+—- (C3pk(v vg — 50,3’6) + C4(Pap — Dag)

e o5 2, o,
tCshk (5 * 52 ™ ‘5""@.@7))

The last unknown, which remains in the modelled Reynolds stress transport equation,
is the turbulent dissipation rate e. The modelling of a transport equation for this quantity
has been given already for the first two equation model, and only the discrepancies due to
the different level of closure are of some interest here.
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A basic difference compared to the eddy viscosity model is that the Reynolds stresses
can be considered now as exact quantities. This yields a more accurate evaluation of Pk,
the production term. Furthermore, as the eddy viscosity does not exist any longer, the
turbulent diffusion transport of the dissipation is modelled by a generalized gradient flux
approximation from Launder [15]:

= k +— Oe
—Va€ = Ce : vavﬂ% (III - 13)
As far as compressibility terms are concerned for the dissipation equation, the exact
derivation of the equation introduces variable density terms as shown in [11] but the usual
method is to ignore these terms and keep the e-equation similar to its incompressible
counterpart. The modelling is done globally. If compressibility terms are introduced in
the turbulent energy equation or here, in the Reynolds stress equations, experience shows
that their counterpart is needed in the dissipation equation as well.
The modifications induced for the total energy equation are derived similarly; the
turbulent fluxes are expressed with an anisotropic relationship and the triple correlations
follow the same approximation as in the Reynolds stress equation. The modelled total

energy equation writes now as:

0, = O [, = 2 00~ T O0vy | —
a(pE)-{-%:((pv.,E-Fp-!-g,uE;:)u.,-i- (pvav.y—;tar: Uy

A o oIt v
—05C" S aa _ ala | Yola III - 14
0.5C, < vivs—5— “8:1:-,( 5t 5 ) ( )

_k =, oT v, Ovg 2. v\
~(CeCorp ev"v"+6ﬂ"K)6xﬁ "”(axﬂ +537_-; - 56“”9%:)%) =0

treatment.

IT1-2.- Implementation

For many years, the development of numerical methods has been motivated by the need
of solutions for the Navier-Stokes equations. Only recently, has interest increased in the
solution of turbulence models and the development of accurate turbulence models has been
recognized as a necessary route. Indeed, the interest in algebraic models has been due in
part to their inherent simplicity, but also to the straightforward extension from laminar to
turbulent cases by merely an alternate definition of the viscosity coefficient. Unfortunately,
experience has shown that such a crude modelling assumption was not satisfactory as
soon as the flow was slightly complex. The use of transport equation turbulence models
introduces the turbulent kinetic energy, which needs to be accounted for in the total energy
budget. For incompressible flows, this concept is not relevant, since the pressure is not a
thermodynamic variable, but has only a mechanical role. In compressible flow the situation
is quite different and the existence of k is felt everywhere in a Navier-Stokes solver, even
inside the Euler part.

A second difficulty, which is associated with transport equations for turbulence models
is the treatment of non conservative source terms. As most of numerical schemes for Navier-
Stokes equations took advantage of their strong conservative character, problems related
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to the stability and the stiffness of source terms has often been discarded. We will examine
in this report, various techniques to handle these problems, especially in the framework of

implicit schemes.

I[I-2-1. Energy coupling

The instantaneous form of the total energy definition is:
pE:pe+%pvava (IIT - 14)

In terms of Favre mean and fluctuating components, this equation becomes, after time
averaging:

~

E=é+%f)aﬁa+k (ITI - 15)

Therefore the solution of the temperature field from the total energy equation requires
the knowledge of the turbulent kinetic energy. Neglecting that quantity [16] is equivalent
to ignoring the energy which is extracted from the mean motion to constitute the turbu-
lence energy. For incompressible flows, this is ignored and the turbulent motion is only
superimposed to the mean. The coupling appears only through the mechanical role of the
turbulent stresses, which are added to the viscous terms. For compressible flow calcula-
tions, all the energy exchanges between the various scale motions must be considered to
satisfy the global energy budget. It is well understood that, in most of the inviscid part of
a flow field, the turbulence level is very low and the energy budget is not affected. But in
regions with high shear or strong pressure gradients, the turbulent kinetic energy can be
of the order of the mean, and must not be neglected as done usually {17],[18],[19].

The complete formulation of the constitutive relationship for the Reynolds stress is
written in terms of density weighted variables as:

~pUglg = [ 4 282 i %

Ozg  Oza 3 aﬂaw.,

in which the turbulent kinetic energy term makes the contracted index form possible. This
feature appears explicitly in the momentum and total energy equations where a turbulent
normal stress is added to the mean pressure. A so-called effective pressure can be defined
in the following way:

Sag b (I1I - 16)

p* =ﬁ+§ﬁk (I1I - 17)

In fact, this turbulent contribution to the pressure field is only an approximation
neglecting the anisotropic nature of the Reynolds stress tensor. It was only introduced to
insure a non-zero trace of this tensor.

Such an approximation does not take place within the framework of a second order
closure. In that case, the normal stresses appear explicitely in the momentum and total
energy equations. Then, the relevant effective pressure is not isotropic any longer, but
also depends on the turbulent energy distribution on its three normal components. For
instance, in the a-momentum equation, the effective pressure will be:

Pl =5+ pu2 (IIT - 18)
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Unfortunately, the concept of an anisotropic pressure field is difficult to handle, es-
pecially with respect to the temperature field. Therefore, it is necessary to follow the
same reasonning as for the static pressure definition from the kinetic theory of gases, and
approximate the turbulent pressure by the mean of three components, i.e. 3 2 5k.

111-2-2. Diagonalization of jacobian matrices
To avoid the severe limitations of explicit methods, implicit schemes are preferred. A
classical (but non unique) method for obtaining an implicit approximation is to take the

time derivative of the original system.

o oU 9F oG
IIT-19
5ilar vty =1 ( )
with the vector elements:
- ﬁ - [ pﬁ -
pi Pt +p+ L”
P puv + pu v
PE pil + (p+ pu?)i + pu"v" o
U = [)ui"v” F = p-ﬁu”v”
PE pue_
pu”? piiu”?
pv”2 puv”?
L ﬁw”2 . I p-ﬁwnz ]
- p‘v _ -
pﬁﬁ + pu” ”»
PR
PUE + (P + pv"?)0 + pu”v'd
G — ﬁﬁu” ”
pe_
o't
pou
i pow”? ]
Define the jacobian matrices as:
oF oG OH
A=%; B=—U; C=—v (III—?O)
the implicit approximation writes as:
(I+ Atagr + Ataab;l 2 _ALC)SU™M! = AU (IIT — 21)

24



with the following increments:

6Un+1 +1 oun
. n = At
at '’ AU A ot
Equation (III-21) can be solved either by approximate factorization or by classical
relaxation methods such as line Gauss-Seidel or point Jacobi.
Equation (III-15) is used in the development of the diagonal form of the jacobian

matrices A and B. Consider, for instance the x-direction, the jacobian A can be related
to its diagonal form by the relation:

sU™ = At

(IIT - 22)

A=SX"T1.A4.5X (IIT - 23)

To illustrate that, only the A jacobian is shown here:

0 1 0 0 0 0 0 0 0 1
" B B B
421 422 g5 B 00 1-5 -5 -3
—@5 & @ 0 0 0 0 o 0
A4l A42 —fas va & 0 (1 = -g-) i —,8% —ﬂ%
A= (IIT — 24)
v’ uv” 0 0 & 0 0 0 0
—¢i € 0 0 0 @ 0 0 0
~uw'? w2 0 0 0 0 i 0 0
"% 2 0 0 0 0 0 i 0
| —w"?d w"? 0 0 0 0 0 0 U
with the following terms:
A21 = aff — i
A22 = (2 - B
A4l = 2Baii — yEii + Bk - o' v — ik 2
- 22 4 52 —_
A42=7E—ﬁ.§u2i_ﬂk+u”2

These matrices show clearly the coupling between the Navier-Stokes equations and the
transport equations for the normal components of the Reynolds stress tensor, just because
of the introduction of the turbulent kinetic energy in the global energy budget, whereas
there is no apparent coupling with the shear stress and the dissipation rate equation. In
fact, these equations are related to the previous through the source terms only.

I11-2-3. Treatment of non-conservative equations

To treat implicitely the source terms, various techniques are available. Recall first the
general implicit approximation:

04 | at9Be _ atcysuntt = AUR (ITI - 25)
oz Oy

(I+At
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The simplest way, which is somehow trivial, is to apply a first approximate factoriza-
tion, without considering the formal content of the source terms. Then it comes:

O0Ae O0Be JAe O0Be
I+ At— + At—— —AL.C) = (I + At At I-At.C)+O(At?) (IIT-2
(I+ A2 + M2 — ALC) = (T+ 88550 + AT%) (I- ALC) +O(8F) (ITT - 26)
The C matrix can be considered as diagonal whatever the formal content is, i.e.
0 0 0 0 0 0 0 0 0 7
0 000 0 0 0 0 0
0 000 0 0 0 0 0
0 6 00 HO 0 0 0 0
0000 —= 0 0 0 0
0 000 0 £ 0 0 0
C = pe (IIT -27)
0000 o o o 0
ﬁu"Z
0000 o o o ZZz o
pv”?
0000 O 0 0 0 ==
L ﬁw”z ¥

Before doing the work on the space operator, the inversion of the diagonal source term
matrix is straightforward:

OAe + At OBe

(I + At 5

) SU™ = AU™. (I + At|C])! (IIT - 28)

Therefore, the explicit increment is modified first by the source term contribution,
before being updated by the space derivative operator(s), either with an approximate
factorization or a relaxation technique.

A slightly different method avoids the factorization for the source contribution. Then
the source terms are grouped with the transverse advection operator [20],[21]. In that case,
the same eigenvalue is used, which is the the maximum value among all equations to be
solved.

Unfortunately, the use of these blind forms, without accounting for the formal content
of the source terms does not guarantee the stability. Therefore, it has been found necessary
to develop more exact forms of the jacobian matrix. Although various developments are
possible, we will develop here a typical form which has been prooved very efficient, as far
as stability is concerned.

Consider the set made only with the turbulence transport equations. The convective
and diffusive parts are supposed already solved with the Reynolds averaged Navier-Stokes
equations. Then we have only to work on:

o _
v
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where the two vectors U and H are now:

_ pk | Hk _
U_[pe] H‘[HC] (IIT - 30)
An implicit approximation of equation (III-29) is:

urt! =yt + At.H"! (IIT - 31)

in which H"*! is evaluated at time (n + 1). This can be achieved by a first order serie
expansion:

H"+1=H"+%g-5U; with 6U = U™t — U™

Then the implicit approximation can be rewritten as:

(I—At—a—I-I-)6U=AtH" (IIT - 32)
oUv

The task is to evaluate properly the jacobian matrix. Let first discriminate between
positive and negative source terms. An rather elementary stability analysis on equation
(193) shows that stability cannot be obtained with an implicit approximation when the
source term is positive. The same is true for an explicit approximation with negative
source terms. Therefore we keep only in the implicit approximation the "good” terms,
which are negative. All the permanently positive contributions are treated exclusively in
the explicit part of the scheme.
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IV. CONCLUSIONS

In the framework of this report, the following tasks have been accomplished:

* Implementation of variety of transport equation turbulence models in a versatile
boundary layer code. These models range from the algebraic Baldwin-Lomax to the
full second order closure, derived from the LRR approach.

* Implementation of a full second order closure in an implicit solver (MacCormack
scheme complemented with flux vector splitting and line Gauss-Seidel relaxation
method.

These various turbulence model implementations have been applied to a wide range
of compressible flows in two dimensions.

The second order closure have been shown to account implicitely for complex turbu-
lence effects, like strong anisotropy variations or curvature effects. Nevertheless, experience
of the authors have shown that its use for routine computation is still limited by stiffness
of numerics and computational costs.
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NAVIER-STOKES COMPUTATION OF COMPRESSIBLE TURBULENT
FLOWS WITH A SECOND ORDER CLOSURE.

Final report for NASA-Ames grant no. NCC2-186

Part II.

C. Dingus and W. Kollmann, MAME Dept., UCD, Davis, CA.95616

Objective.

The objective of the present part of the project was the development of a complete second
order closure for wall bounded flows including all components of the dissipation rate tensor
and a numerical solution procedure for the resulting system of equations. The main topics
of the present grant were the closure of the pressure correlations and the viscous destruction
terms in the dissipation rate equations and the numerical solution scheme based on a block-
tridiagonal solver for the nine equations required for the prediction of plane or axisymmetric

flows.
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1.0 Full second order closure for wall bounded flows.

1.1 Introduction.

A full second order closure for wall bounded shear flows is developed, which includes the
Reynolds stress equations and the equations for all relevant components of the dissipation
rate tensor. Incompressible and compressible plane flows are considered, but this report is
only concerned with incompressible flows.

There are several reasons for the development of a complete second order closure. It can
be shown that the anisotropy of stress and dissipation rate tensors approaches the same limit
at the wall, but the derivative of the anisotropy of the dissipation rate is twice the derivative of
the stress anisotropy at the wall. Another reason is the possibiity of constructing apppropriate
time scales in the near wall region. The standard second order closure incorporates the
transport equation for the trace of the dissipation rate tensor and relates the components of
the tensor via local relations to the trace. The time scale for the destruction of the trace is
usually modelled using the time scale

1

™D

?r-lm)

where the modified dissipation rate € is defined by

€= 6—91/(6\/%)2
= 2 By

with y denoting the coordinate normal to the wall. This is an acceptable model in the region
close to the wall if and only if the dissipation rate is a nondecreasing function of the distance
from the wall, because the kinetic energy is of order O(k) = y? near the wall which implies
that the second term in the modified dissipation rate is constant. Direct simulations of
boundary layers and channel flows, however, have shown (see Mansour et al., 1988) that the
dissipation rate is a rapidly decreasing function of the wall distance in the viscous sublayer
and the destruction model using the time scale rp becomes thus a production term in the near
wall region. This is clearly a violation of realizability for the destruction model. It follows
that this type of closure model does not represent properly the production of dissipation rate
near the wall and the sign reversal of the viscous destruction model must make up for this
deficit in production. The motivation for the modified time scale is the fact that the time
scale L

€

T

goes to zero as the wall is approached. It will be shown below that the full dissipation rate
tensor allows a realizable and tensorially invariant construction of a time scale or a time scale
tensor that reaches a finite and nonzero limit value at the wall.
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A second point that sets the near wall region apart from the high Reynolds number
regime of the boundary layer is the growth of the pressure corelations with distance from the
wall. Tt will be shown below that the usual split of the pressure correlations into pressure
transport and pressure rate of strain correlations is not appropriate near the wall, because the
split correlations grow with different rates and the Taylor series for the original correlation
involving the fluctuating pressure gradient can be expressed locally up to second order in
terms of velocity correlations.

1.2 Exact equations for the dissipation rate tensor.

Incompressible flows are considered first. Standard manipulations lead to the transport
equations for the dissipation rate tensor in a Cartesian coordinate system defined by

€ap = 2v0,v,0,v (1)
with expectation denoted by {€qg). The equations can be given in the form
(Ot + (v4)0y){€ag) = O5[v0y(ap) — (vieap)] + Sas + Sap + Sgﬂ + Sap + Sgﬂ = Dapg  (2)

The various source terms are defined as follows.

Sk = —(€84)0(va) — (€ay)Bs{vs) (3)

§25 = —(€15)(0,(vs) + B5{v4)) (4)

5'25 = —-(6575.,1):,) - (60737”:3> (5)

§i5= —27”((6271)'6.,%) +(03,p'8,04)) (6)
%5 = —2((v50,0) 02 (va) + (v50504)035(vs)) (7)
Dos = 4% (0%, v, 05, vp) (8)

Furthermore is the fourth order dissipation tensor defined as
eZi, = 20050, 0,4} (9)

The properties of the source/sink terms on the right hand side need to be established before
closure expressions can be constructed.

1.2.1 Equivalent forms of the pressure correlations.
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The pressure correlations S5 g can be given in several equivalent forms. It is instructive to

split them analogous to the pressure-rate of strain correlations in the stress equations. It
follows from (6) that

2 /
Sty = —f{aava'avvw + 83{0,P'0y0h)} + Bag

where the non-gradient part is defined by

D

Bag = = (0,7 01(3av) + 032)

The non-gradient part B,s resembles the pressure-rate of strain correlation and shares with
it the property
Bao =0

It follows that B,g redistributes intensity among the components of the dissipation tensor
and leaves its trace unaffected. Further splitting of Bag leads to
2v / ' ! 2,09 ' !
Bap = 2£0,(0,5'(Gutl + 030%)) = {0%,p (v + 0pv2)

The non-diffusive part of Bag contains the Laplacian of the pressure fluctuations which is
governed by

1
—-/;6?,.,13’ = 93,8ty + 20av305(va) — Bag{vavp)
This equation has an important consequence: The non-diffusive part of Bys can be repre-
sented locally in terms of velocity fluctuations. We get

ﬁ)
Bag = :,';Iia“r(a'rpl(aa”;? +9pva))+

20(0,v505v.(Favy + Opvg)) + 4v(8,v5(8avj + Ogv5)) 05 (v)

We conclude that the non-diffusive and non-gradient part of the pressure correlations does
not contain a direct influence of the wall and the wall effects can be represented as gradients
and divergence of a flux. This property very important for the modelling effort. Inspection
of the local part of Bos shows that it has the structure of the primary production term (5).
Recasting this part in terms of vorticity and strain rate defined by

€a8, 087",

ol —

Wo =

and !
SaB = -2-(80,'0;3 + O0pVa)

35



leads to
2(0,v505v!, (Bavy + Dvl)) = 4v(s4ps,s9Ls) = 8u(sp gwlwl)

whereas the primary production terms appear as
3 o . '
Sap = ‘4V((3:17°’-76°:Sﬂ) + evan<°'ﬁ63:5-yw:7) + 67/917(5::63557‘*’:;) + fvawfisﬂn(sl—w“’nw;))

The last term can be recast in terms of the Kronecker delta using the tensor relation

b8 648 by
€Evaw€sfn = det | 6a5 bap 5(,,7
bws 6wﬂ 5ur;
leading to
ngﬂ = _4’/((5’073’75‘3313) + 5700(3’/363%1“’;) + 675,,(32,53'5700;)

(s 0) + (s} = () = Ban (i)

It is apparent that no complete cancellation of triple correlations takes place. The pressure
correlations appear now as a combination of the divergence of a flux and sources.

Sas=0sFls5 + Qb

where the flux is defined by

> ¥

Fgﬂé = (ewﬁnéuva(&rl"aﬂvk) + fwénfw'rﬂ(a*rplanv;))

or
2 / ! ! ! '
Figs = ‘;V((a&P (Oatly + O5vh)) — bas(Oyp'Byv5) — 855(0+P'0yva))

The trace of the flux F¥ g is not zero but given by

4y
Flog = == (0.7'0:0%)

The redistributive sources are given by
Q75 = 20(0yv; 05’ (Davly + O5v,,)) + 4v(0505(Bavy + F5va)) 05 (v-)

where the trace of Q% ; is zero. It is noteworthy that one of the components of (9,p'0yvg)
can be expressed in terms of a component of the dissipation tensor

4-:—(6210'320'1) = vdy{e12) + O(y)
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according to the power series for the pressure given below (19). For v # 2 the gradient of the
wall pressure can be expressed in terms of velocity using the momentum balances. In fact

1
—0,p' = vd? V!
p

holds at the wall y = 0.0. It follows that the wall pressure does not exert a direct influence on
the dissipation rates if the expansion is carried out to second order. It is clear that modelling
can be based on the properties of the flux and the redistributive source terms. However, the
growth rates for the terms in the different formulations of the pressure correlations decide in
the end their usefulness. This will be investigated in the following chapter.

1.2.2 Taylor series expansions for the near wall region.

The near wall region can be analyzed with Taylor series. The coordinate system is
assumed to be located at the wall and z; 1s the direction of the wall normal pointing into
the flow field. It is convenient to rename the coordinates and variables as follows: z; = «z,
T2 =y, r3 = 2z and v; = u, v2 = v, v3 = w. The velocity components can be expanded with
respect to the wall normal y

U(-’C,ya Z,t) =ap + ay + 02y2 + a3y3 + O(y4) (10)
U(I’yazat)=b0+bly+b2y2+b3y3+0(y4) (11)
w(z,y, z,t) = co + 1y + c2y® + cay® + O(y?) (12)

where the coefficients are stochastic functions of z,z,t but not y. They are defined by

1 du
aj(:c,z,t) = ]—'.—017(0)
19w
bj(.’L‘,Z,t) = ?53'/7(0)
1 0w
: t) = ——
C](J),Z, ) J' ay] (0)
The noslip condition at the wall implies that
ag=by =¢cp =0 (13)
holds and mass balance
Oave =0 (14)
leads to
ay’vo = bl =0 (15)



and
O0:0n + 0;Cp = —(n + l)bn+1

for n = 1,2,---. The Taylor series for a fixed wall without suction or blowing are therefore
given by

U(z‘,y,z,t) = 01y+(l2y2 +a3y3 +O(y4) (16)

o(z,y,2,t) = bay® + bay’ + O(¥*) (17

w(z,y,2,t) = a1y + c2y® + e3y’ + O(y*) (18)

The expansion for the pressure can be given as follows
p(z,y,2,t) = po + 2ubay + 3pbsy’® +psy’ +O(y") (19)
where g denotes the dynamic viscosity and

_ 19,

ATy ,t = =
pJ( z ) J|ay]

and the momentum balance normal to the wall was applied to a point at the wall. The
expansion for the pressure gradient can be shown to be

az 01 b; 101 b3
Op=2u| b | +2uy| 355 | +3y° | m | +00°)
c2 O3bg pu03by

which shows that the terms up to first order are proportional to viscosity. The components
of the Reynolds stress tensor appear in expanded form as

(%) = y*(a?) + 2* (@ a) + y*(2{aras) + (a3)) + O(y°) (20)
(v?) = y* (B2) + 2y° (babs) + O(y°) (21)

(w?) = y?(c?) + 2P (c12) + ¥ (2(crca) + (c2)) + O(v°) (22)
(uv) = y*{arbs) + y*({arbs) + (a2b2)) + O(y°) (23)

The components of the dissipation rate tensor vary near the wall according to
(e11) = 2v{{al) + 4y(a1a2)

+y%(6(aras) + 4(a}) + ((B:a1)*) + {(:a1)*)) + O(y*)) (24)
(eaz) = 2v{dy’ (b3) + 124° (babs) + O(v")} (25)

(e3s) = 2v{{c}) +4ylcica)
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+y2(6{cacs) + 4(c) + ((9:e1)%) + (9:¢1)) + O(v”)} (26)

(e12) = 2v{2y(arba) + y*(4{azbe) + 3{a183)) + O(y*)} (27)

It is apparent from these series that different components grow differently near the wall. It
follows that the boundary values for the dissipation rate tensor are given by

(11)(0) = 2v(a]) (28)
(€22)(0) = 0.0 (29)
(e33)(0) = 2v(c}) (30)
(€12)(0) = 0.0 (31)

It can be shown that the anisotropy of the Reynolds stress tensor is equal to the anisotropy
of the dissipation rate tensor at the wall and that the normal derivative at the wall of the
anisotropy tensor of the dissipation rate is twice the normal derivative for the stress ten-
sor. We consider now the near wall variation of the individual terms in the dissipation rate
equations.

1.2.2.1 Viscous Diffusion.

The dominant term in viscous diffusion is the normal derivative given by

8,(vdy(enn)) = 42 (6(aras) + 4{a3) + ((8:@1)?) +{(9:01)%)) + Oly) (32)
8y (v, (e22)) = 16v°(b3) + O(y) (33)

8,(v3y(€ss)) = 4w*(6{crca) + 4(c3) + ((8:¢1)%) +((8:e1)")) + O(y) (34)
8,(v0,(€e12)) = 4v*(4{azb2) + 3(a1b3)) + O(y) (35)

and they emerge as terms of order unity near the wall for all components.

1.2.2.2 Turbulent diffusion.

Turbulent diffusion of the dissipation rate component eqg is defined by
&,F;'ﬂ = —0,(v.€ap) (36)
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For the case of boundary layer type flows only the flux normal to the wall is relevant. The
series expansions lead then to the following expressions for the components of the dissipation
rate tensor

Oy Fyt = 2y(b2e11(0)) + O(y*) (37)
0, F2% = 4y (bye22(0)) + O(y*) (38)
0, F3* = 2y(bye53(0)) + O(y*) (39)
8, F)? = 3y*(b20y€12(0)) + O(y°) (40)

The expansions show that turbulent diffusion is not of leading order near the wall.

1.2.2.3 Secondary production S ,.

The interaction of the mean rate of strain and the dissipation rate tensor acts as production
for the dissipation rates in the same fashion as the Reynolds stress and mean strain rates
for the stresses. There is however a fundamental difference between this type of production
for dissipation rates and stresses: It is of leading order for the stress balance but of second
order for the dissipation rates for high Reynolds number flows. The situation near the wall
is entirely different. The components of S} 3 turn out to grow with wall distance as follows

St = —2y8y (u)(0)8, {e12)(0) + O(y") (41)
Sp2 = —16vy° 0, (v)(0)(b3) + O(y") (42)
Si,=0.0 (43)

Sta = —8vy*0y(u)(0)(b3) + O(y’) (44)

The secondary production terms S} 3 are not of leading order near the wall, but closed. Hence,
they need not be neglected.

1.2.2.4 Secondary production S25.

The series expansions lead to the following results

S% = —y{B, (u)(0), (€11)(0) + 282, (v)(0)(e11)(0)} + O(¥?) (45)
S32 = —2vy* {20, (u)(0)0; (b) + 80y, (v)(0)(b3)} + O(y*) (46)
S3s = —y{8y (u)(0)9: (€33)(0) + 20}, (v)(0){ess)(0)} + O(v”) (47)
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Sty = =20y {20, (u)(0)((b20sa1) + (@18:b2)) + 405, (v)(0)(@rb2)} + O(y°)  (48)

It is clear from these expansions that the source terms S2 g are of second or higher order for
boundary layer flows.

1.2.2.5 Primary production.

The primary production or vortex stretching terms are the dominant production terms in
high Re-number flows. For the near wall region they appear in expanded form as

Sh =~ {y(30al) + 3(alba)) + OWP)) (49)

S8 = —4v{y*(1005) + Bufartd) + Os*)) (50)

S = {50 (arcd) + 3{cta)) + O(y*)) (51)

Sty = =20{y*(8:{b2al) + 8(a1 b3) + 2(c1520:01) + {a1¢18:b2)) + O(y°)} (52)

The primary production is not of leading order near the wall, but grows with the same order
as the secondary production term S5 with wall distance.
1.2.2.6 Viscous destruction.

Viscous effects can destroy the rate of dissipation and this process is contained in Dyg. The
series analysis shows that the components of D,3 are near the wall given by

Dy, = 42 {4{a?) + 2((8;a1)*) + 2{(8:¢1)®)} + O(y) (53)
Dyy = 402 {4(bF) + 24y(b2bs)} + O(y?) (54)
Dys = 4v*{4(c}) +2((8:c1)%) +2((0:¢1)")} + O(y) (55)

Dy; = 4u2{4(a2b2) + y(4(01a1('),bg) + 4(0za102bg)+
12(azby) + 12(asb2))} + O(y*) (56)

All components of Dag turn out to be of leading order.

1.2.2.7 Pressure correlations.
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The Taylor series for the pressure (19) contains viscous terms which are due to the momentum

balances. Differentiation of (19) leads to expansions which contain viscous contributions in

lowest order. The components of the pressure correlations S5 appear as follows

St = av*{6(a1bs) + y(2(0:a10:a2) + 2(8.a10;a2) + 4(a20:b2) + 6{a10:b3)) + o@H} (57)

4, = 47 {12y(babs) + O(y*)} (58)

533 = 4V2{6(C1 b3) + y(2(6zc132a2) + 2(8;616,()2) + 4(6281-02> + 6(c10,bg)) + O(y2)} (59)

6
51142 = 21/2 {6(&163) + y(_?.(@,,.alazbg) +2(83a163b2) + 12(&21)3) +4(b262b2) + ;(alpg)) +O(y2)}
(60)

The series expansions of the pressure correlations lead to several important conclusion: The
effect of the pressure correlations in lowest order is local in terms of velocity correlations. No
Poisson integral appears in lowest order since the wall pressure does not appear in the lowest
order terms. The split of the pressure correlations obtained in chapter 2.1 leads to a flux
F7 4., such that the corresponding source term is strictly redistributive and local in terms of
velocity fluctuations. The pressure flux is local in velocity in expanded form up to second
order. Note that there is a clear advantage for not splitting the pressure correlations in the
Reynolds stress equations near the wall since the split terms (rate of strain correlation and
pressure transport) grow with different rates in the viscous sublayer. This is not the case for
the pressure correlations in the dissipation rate equations. The components of the pressure
flux emerge for the case of a flat plate boundary layer as

4
Fl, = —p‘iwzp'a] o))

4 ! ] ! !
Fly = 7”{<aap Dsvh) + (01901 vh) }
p 4y , )
F332 = 7(321? 83v3)

2 ! ! 1
Fly = f{(azp'aw?) — (Bsp'B50}))

which can be analyzed with the aid of Taylor series. We get the following estimates for the
divergence of this flux near the wall

8y FFy = 80%(b8:a1) + O(y)
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azepzz = 0(y)
8, Fhy, = 807 (by0.01) + O(y)
B FP, = —4v?{c20:c1) + O(y)

It follows that
02 FPy + 02 Ffyy = —0y(v02(€22)) + O(y)

holds. This proves that the pressure flux terms are of leading order near the wall because
viscous diffusion is of leading order in this region.

1.2.2.8 Near wall production.

The production terms proportional to the curvature of the mean velocity profile are respon-
sible for additional production in the near wall region. The series expansions lead to

55, = au{y(a?)2, (1)(0) +¥7((a})02, (u)(0) +3(araz) 0%, (u)(0) + 2(a2bz) Oy, () (0)) +0(y*)}

(61)

S5 = O0(y") (62)

5%, =0 (63)

5?2 = Vy2{(a%)aiyy<u)(0) + (ale)azyy(u)(O))} + O(ys) (64)

The near wall production emerges as second order effect near the wall if the boundary layer
assumptions are satisfied. The component (e;1) receives all the energy in lowest order.

1.2.2.9 Transport equations in lowest order.

The series expansions for the source and diffusive terms allow the set up of the transport
equations for the components of the dissipation rate tensor in lowest order. It turns out that

all equations are of the same zeroth order.

dilen) = 0,(v0y(enn)) — Dun + St (65)
0 = 04(v04(€22)) — D22 (66)
dr(es3) = B(vdy(exs)) — D33 + S5 (67)
0 = 0,(v0y{€e12)) — D12 + Sta (68)

These equations are valid near the wall provided none of the surviving correlations vanishes.
For steady flows the following equations hold then at the wall

Dy - S = 05(v0,(en))
Dy = 0,(v0,(€22))
D33 — S33 = 04(v05(€as))
Dy3 — Sy = 05(v04(€12))

which can be combined with the limit relations for the stress balances to establish constraints
for the modelled terms at the wall.
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1.3 Closure model for the dissipation rate equations.

The series expansions for the near wall properties of the dissipation rate equations can be
used to analyze and to modify closure expressions. In several cases no model expressions
exist and new models will be developed and analyzed.

1.3.1 Time scales.

Several time scales can be constructed for the near wall region with the aid of the dissipation
rate tensor. First we note that a scale dependent on the wall normal vector can be obtained

in the form
k

ny15{€5)

T

(69)

If n, = &, it follows that this time scale is given by
k
(€22)
and the series expansions show that both numerator and denominator depend quadratically
on wall distance. The wall limit is in fact a nonzero value given by

(3y1L00yu0) + (0yw03yw0)

4V(0§y’£’oa§yvo)

T =

(0) = (70)

Hence, a time scale with a nonzero limit at the fixed wall was constructed. This time scale
avoids the problem associated with the modified (also called homogeneos) dissipation rate

€ =e—2v(0, Vk)?

which may change sign in the flow field. The inverse of another time scale with tensorial
character using the dissipation rate tensor can be set up as follows

o = {ean) (v R) ™ o) (1)

where (v/v5)~! denotes the inverse of the Reynolds stress tensor. Conversely is a time scale
given by

1 1y
Taf = '];(v::rvfy)(e‘ﬁ) l(”&”h) (72)

where {€qag) ! denotes now the inverse of the dissipation rate tensor.

1.3.2 Turbulent diffusion.
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The gradient flux model for Ff{’ﬁ can be given in the form

ap=, K
F7P=c,—(v,v5)05(¢as) (73)

where the kinetic energy is denoted by
. 1,,,
k(£7t) = §(vava)

and the dissipation rate € by
(€aa)

The constant ¢, has values in the range 0.15 — 0.18. The near wall properties of this model
follow from the series expansions (10) to (27) as

o=

e(z,t) =

8,F,' = 0(y°)

whereas the exact term has a first order variation with respect to the wall distance according
o (37). Similar discrepancies are observed for the other components. It is clear that model
expressions developed for the high Re-number regime will not represent the near wall region
properly. The present model (73) implies that near the wall turbulent diffusion is essentially
neglected in comparison to the exact term. Inspection of the model (73) shows that there are
two reasons for its failure near the wall: The time scale % approaches zero at the wall and
the diffusivity is solely determined by the normal stress component {(v')?) which varies as y*
near the wall. The situation can be improved if a composite time scale that approaches the

scale defined by (69) near the wall is used. The modified closure model is then given by
Forzle b () 0uean) (74)

The factor 2/3 results from the requirement that the high Re- number limit of the time scale
must agree with k/e.

A different model that satisfies all growth estimates and has the correct tensorial and
dimensional properties can be constructed if the dependence of the turbulent flux on the wall
parameters n and R, is taken into account and the near wall model is combined with the
high R.-number model. The near wall model is given by

—(v)€as) =, fur(Ret)[nanc (vhve)] i ny (€as)
It is straightforward to check that it has the same growth rate and the same tensorial prop-

erties as the exact term. The model represents turbulent transport towards the wall and
has the form of a convective term. There exist several high Reynolds number models for the
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turbulent flux of dissipation rate (Hanjalic and Launder, 1972, Lumley, 1978). The present
model is an analogue of the flux model for the stresses. It is given by
.k 0
—(U'yeaﬂ>:‘3e‘€'<vfyvtlﬁ>a_x';(faﬂ>

The combined closure model is the set up as follows

k a
_<Ugfaﬂ)éclefw2(Ret)[nnndv:;vé)]%n7(€0ﬂ> +ce(1 - fw2(Ret))€(vfyvi’5>a_x6(eal3)

where fu2(Re¢) denotes a function of the local Reynolds number such that fy2 goes to unity as
the wall is approached and to zero in the turbulent zone. Furthermore, The function fw2(Ret)
should be nonnegative and it should not modify the dependence on the wall distance for the
near wall model. It follows that f,; must be an exponential function of the Reynolds number
given by

:et 2]

e2

where R.; is a constant measuring the range of influence for the near wall model. This
function of the Reynolds number has the well known property that all its derivatives at zero
vanish. Hence, it does not modify the growth rate of the near wall model.

fw?(Ret) = GJ:;D[-—(

1.3.3 Secondary production S2;.

The properties of S2; in the high and low Re-number limits will be considered first. Local
isotropy requires that
2
. ~6 2
lim (e,5) = 56(,[36755

Re—o0

holds. It follows that the secondary production terms S2 3 are for high Re-numbers given by

lim S, = -g-aa,,em(%) (75)

Re—o0

The divergence of the mean velocity is zero for incompressible flows and it follows that the
high Re-number form of the secondary production terms can be neglected. The near wall
variation of the secondary production term S}, according to (45) can be regarded as

St = —(1)0x(enn) — 2(en )9y (v) + O(y”)

and it follows that this term is at best of the same order of magnitude as the mean convection
term. Similar relations hold for the other components and we conclude that the secondary
production terms $2; can be neglected.

1.3.4 Primary production and viscous destruction.
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The closure model for these terms is fundamentally different in the high and the low Reynolds
number limits. Both limits need to be considered and the corresponding closure models must
be merged to cover the range of Reynolds numbers from zero to infinity.

High Reynolds number limit.
The order of magnitude estimates for primary production and viscous destruction at high
Re-numbers shows that they are of leading order, but their difference is of the same order
as the secondary production term S} g- 1t follows that they should not be treated separately
but their difference should be modelled as function of the available information. The model
consistent with second order moments is in general given by

S35 = Dag==Vap((esu), (v5uL), Os(v)) (76)

The dimensionless and symmetric tensor ¥op should represent both production due to the
interaction of vorticity and strain rates and the desctruction due to viscous effects. If we
impose the condition of local isotropy on this model we get the following variant

VapZ8as ¥V ((es), (0 05), 05 {vs)) — Lop({esn), (vivl), Bs(va))

where the first part represents the productive and the second the destructive contribution to
the model for the difference of 5(3, 3 and D,s. The model can be set up to be consistent with
the standard expressions for the trace equation (see Launder, Reece and Rodi, 1976)

(vyv5)

€

- 1 €a
qlaﬂ": - Celgéaﬂ a-y(”&) - 662(_;42

and the time scale is given by

o | =

The closure model

533~ Dag = cagbaas (v,05)05(vs) = caaleas) ] (77)
emerges. It is, however, not applicable to wall bounded flows since the destructive part of
this model becomes singular as the wall is approached. This deficiency can be corrected
either by defining a time scale that does not go to zero at the wall or by merging low and
high Reynolds number closures with a Reynolds number dependent function such that the
singularity is removed. Finally, we note that this model is not necessarily positive definite
because the productive part ¥{!) is not positive definite, a property shared with the exact
term. Refined closure models can be constructed using tensorial time scales introduced in
chapter 1.3.1.

Low Reynolds number limit.
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The dependence on the wall distance is the deciding property as the wall is approached. We
recall that the primary production terms decay with wall distance, according to chapter 2.2.5,
as follows

O(51,)=0(53) =y
0(83;) =y’
0(5?2) = 92

whereas the viscous destruction terms are all of leading order
O(Dop) =1

according to chapter 2.2.6. It follows that they must be modelled separately in the near wall
region. The first step in the construction of the low Reynolds number version is the analysis
of the near wall properties of the high Re-number model. It follows from (77) that

€
O(Z¥™M) =y

which is at variance with the detailed decay laws for SJ; given above for a = § = 2 and
a = 1,8 = 2. However, since the primary production is not of leading order near the wall

it would be acceptable. A more serious problem arises in the destructive part \Pfg If we
construct a time scale such as (69) for the near wall region we avoid the singularity, but it is
not possible to satisfy the decay laws for the destructive terms Dqygs. It follows that the time

scale in any closure of the form given by \Ilgi; cannot be a scalar but has to be a tensor of
rank two (or higher) with positive eigenvalues. It is not difficult to construct a closure model

\I/fl; such that the decay law is satisfied. For instance, the model

6_Ofay _Oepy
Jz0x, 0zs0z,

Daﬂé — Ce2T

with (69) as time scale possesses the correct tensor properties and the correct decay law as
the wall is approached. However, it is unacceptable as closure model because it produces
in regions where the second derivatives are all positive a second order pde with negative
diffusivity. The initial/boundary value problem for such an equation is not well posed and
the numerical solution futile. Furthermore, this model would not be realizable, because the
limit (eqg) — O does not imply that the second derivatives of (eog) go to zero. It follows that
the closure model for the viscous desctruction of the dissipation rate components must be of
the form

DaﬂéFaﬂ“f*{n)’ (l’i,l’:,)v 0((67,,), &;(vfyl’:,), Ret)

where R.; denotes the turbulent Reynolds number defined by

Ret = — (78)
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The example cited above for the destruction of dissipation rate showed that derivatives lower
that second should be used. Several closure models can be set up that are tensorially consis-
tent, have the correct decay law near the wall and avoid the stability problems incurred by
negative diffusivities. We note two of them, first

= leas) 5 Olean) Olesy)
Dopg= — ce2 " C3T TyNg dc, Ors (79)
wnd (ca) 8 (cag), O lean)
- _ €af _ €an/ €3
Dap=—ce2 . cegl/en.,ngarv( p )01‘.5( - ) (80)

as second variant. Note that n, denotes the unit normal vector of the wall pointing into
the flow field. The time scale 7 is given by (69) to avoid a singularity at the wall. The two
models look very similar, but inspection of the time scale (69) shows at once that the first
model is most likely unstable. Suppose that kinetic energy k and dissipation rate component
n.ns{eys) = (€22) are in equilibrium, then assume that this equilibrium is disturbed, say the
kinetic energy is reduced by a small amount. It follows from the fact that the second part in
the first model is quadratically proportional to the kinetic energy that the rate of destruction
of the dissipation rate components is decreased by the disturbance and consequently are the
normal stresses further decreased and the equilibrium state is not recovered. Hence is this
model unstable. It follows that the second model is the preferred one.

Merger of low and high Re-number models.

The closure models for the destruction term (79) or (80) valid for the limit Re — 0 and
the destructive part of (77) valid for the high Re number limit must be merged together to
produce a model valid throughout the flow field. Suppose both limit expressions have decay
laws near the wall that do not need change via the function weighting them according to the
local Reynolds number (or any other function propertional to the distance to the wall). The
we need a weight function that does not change the dependence on wall distance near the
wall. This implies that we must find a function which has zero derivatives at zero. It is well
known that the exponential function

1
f(y) =exp(—§3)

has the desired property, in fact, it is infinitely often differentiable but not analytic at zero
(its Taylor series is identically zero at y = 0). Hence, we can establish a low Reynolds number

function .

F(Re) = expl~(F5 7]

€
which is zero at zero Re-number and unity at infinite Re-number. The constant R; determines
the range of Reynolds numbers for which the function is close to zero. Other functions
have been proposed that are proportional to some power of the wall distance and change
therefore the decay law. Several models have been proposed for the functions f;, multiplying
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the production of dissipation rate, and f2, multiplying the destruction of dissipation rate.

Vandromme et al. (1983) suggested
fi=10

and

fo=10- O.QQexp{-—(-}%)z}

based on the original model of Hanjalic and Launder (1976) and obtained good agreement
with measurements in flat plate boundary layers. Recent developments surveyed by Launder
(1989) use the second and third invariants of the Reynolds stress tensor to represent the wall
influence on production and destruction processes.

1.3.5 Pressure correlations.

It was shown in chapter 1.2 that the pressure correlations can be split into transport and
source terms such that the source terms are strictly redistributive and have no effect on
the trace of the dissipation rate tensor in analogy to the pressure-strain correlations for the
Reynolds stress tensor. It follows that they must redistribute intensity among the components
of the dissipation tensor. Kolmogorov’s hypothesis of local isotropy requires that the dissi-
pation rate tensor approaches its isotropic form as the Reynolds number approaches infinity.
It follows that a return to isotropy model given by
C4q 2

P o=~ Z({eag) — :501 79
Q2= ~ Z({eap) — 3603 (79)
would satisfy this condition. The open question is the time scale. The scale

T =

o | o

is the obvious choice for the high Re-number limit, but the model becomes incorrect as the
wall is approached because 77! goes to infinity with y~2. Modification of the time scale
according to (69) solves this problem and

Qos=— C4'n7mk<€w)(<faﬁ> - géaﬂe) (50)

emerges as nonsingular variant. The transport part of the pressure correlation can be mod-
elled in terms of the viscous diffusion terms because the wall limits indicate this form. The
model

v
Fcl:g-,z - 205(675)115{50,,wt5bu + €gputabe — €agutubs — €gputiubal (81)

where the tangential unit vector is defined by

_ (va)(8)
to = 10 ) (82)
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and the binormal by
bo = €apytpny

satisfies the near wall properties for the components Ff|, and F3,, and neglects the compo-
nents F%,, and FY,,. The effect of the diffusive part of the pressure correlations is therefore
inhibition of the viscous diffusion near the wall for the diagonal components corresponding
to motion parallel to the wall. The effect on shear component and the diagonal component
corresponding to the motion normal to the wall are neglected.

1.3.6 Near wall production.

The near wall production requires in general flows a closure model. However, for the near
wall region in boundary layers expressions can be given that are exact in the wall limit.

Sh= — 4vdy (v} v2) 032 (v1) (83)
Sa= — v02(v7) 35 (01) (85)

The model assumption is essentailly the assumed validity of these expressions for finite dis-
tance from the wall. Since all expressions are proportional to the laminar viscosity, quick
decay with increasing wall distance can be expected.
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2.0 Reynolds stress and complete second order models.

The usual closure models based on the trace of the dissipation rate tensor will be considered
first. Several versions of the Reynolds stress model are available and the most relaible stress
model (Vandromme et al., 1983) will be evaluated. It will serve as test bed for the complete
second order closure.

2.1 Stress equations.

The balance for the Reynolds stress components is given by

0 3 1 Y 0 ) . 6 o ’ag al
(PG + (o i = =) G2+ () 220 + (522 + 52

0 O{vi, v
ar. 5 g
.l'-y 1"“(

where the dissipation rate tensor is defined by (1). The split of the pressure correlation into
pressure transport and pressure rate of strain correlations can be shown to be inappropriate
near the wall. It follows from (19) that the Taylor series for the pressure gradient is given in
terms of velocity derivatives at the wall up to second order. Hence, it is possible to represent
the Taylor series for correlations involving the pressure gradient in terms of local velocity
correlations at the wall up to second order. If the pressure correlations are split as in (86)
the pressure fluctuation itself appears and the solution of the Poisson equation introduces
the well known integral contributions.

The standard second order closures employ the equation for the trace of the dissipation
rate tensor

+ ~ {p)(vavjv)) — basy(p'vh) — 854(P'va)) — (P)éas (86)

€=

{€aa)

o —

which follows at once from (2)
(8 + (v5)0y)e = O, [vOye — (vie) + FP]+ S' + S* +5° +5° - D (87)
The source terms are defined as follows. There are two groups of secondary production terms
§' = ~(€as)0s (va) (88)

and

§? = —(v0svl, 0,009 (v5) + Ds{vs)) - (89)

The primary production term is given by
53 = —(€q,0,0%) (90)
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and the pressure correlations can be given in the form
4 2V 9 !
5= =P 0l (91)

It was shown in chapter 1.2.1 that the pressure correlations can be represented as the sum of
the divergence of a flux and a redistributive source which has zero trace. Hence we get

St = 95 F7 (92)
where the flux is defined by
2v
Ff = —€ubn€ural05p'0yvq) (93)
p
or
v
Ff = -2 0,0/ 0,0) (94)

The near wall production of dissipation rate is proportional to the curvature of the mean

velocity profile
S = —2u(v} 0,0, ) 024 (va) (95)

and the viscous destruction of dissipation rate is given by
D= 21/2(0?70;03717;) (96)

The properties of the source terms have been established in chapter 1. and we observe that
none of the source terms is closed in contrast to the equations for the dissipation rate tensor.

2.2 Standard second order closure model.

The development of the full second order closure was based in a systematic way on
existing closure schemes. The standard second order closure using the trace of the dissipation
rate tensor set up by Vandromme et al. (1983) was an important stepping stone and can be
applied to test closure models for the various processes governing the dissipation rate tensor.
The model is given by

2 9 S L __0 1, (va
(g + )5 05) = =) st o ety B
o oLy
+¢al3 + 017-7 {N <;I:L3) — Fa/3’7} - <p)<éaﬂ> (97)

The pressure rate of strain correlations are modelled by

2. 8 2
= 300ak) = Sp(R)(PH = (Pag = 5823 P)

(ﬁaﬁ& - lep(Re)(p>%((v:1vb)
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802 2 30c; — ( 3) 3(va)
- — k nf 98
as the sum of return to isotropy, fast response and wall contributions, where
d(vgs) Iva)
- [N _ 11
Paﬂ = (vav'y) 01'-7 (vﬂv‘7> am‘y (99)
and P =1/2P,, and
9(vy) 9(v4)
— NN i e 74
Daﬂ = (vav‘7> 31‘5 (v v ) 014 (100)
The wall contribution is given by
. 2 vy
= () (€ £ ((0105) — 605k) + ch(Pag — D) + ek e
3 6:::/3
’ 2 Ll .5
PG Sbas oy (101)

0z 4 0;1,., )}

The dissipation rate tensor must be modelled in terms of its trace and the anisotropy of the
stress tensor

- € LA
(eag)=7(fslvavg) + (1~ f, 5 8ask) (102)
where f, depends on the local Reynolds number. The turbulent flux is modelled by
- k 0
Fapy= = cstp)= (v, Ua)axa (vavg) (104)

The constants are given by c;, = 0.25, ¢; = 1.5, ¢ = 0.4, ¢ = 0.1597, ¢, = 0.0133,
cs = 0.0041. The low Reynolds number functions are given by

fs(Re) = exp (-1—+-;%—273—0) (104)
and
fp(Re) = tanh(R,/50) (105)

The equation for the trace of the dissiaption rate tensor requires closure for all relevant
processes on the right hand side. Following Vandromme et al. (1983) the model

] 0. o, 0 koo O €1y oy L08)
(E’L("’)E;)E_ 01'7[1/81776+C€6<v°l-7)31‘a]_Cd< PR fu(Rer Ry ) (vavs) Ozq
Wk\? , P (va) 0*(va
-_cd(p)fg(Re)i[e—Qu(a\I/;) ] + 2¢e fup{viv )Zax<gx)5 ax(gx)5 (106)



The low Reynolds number functions are given by

fu =L - exp(= Ry P(1+ £2)
and
fi= 14—t
YT T(f, + 10-10)3
2
f2 =1- 0226@(—%')
where JE
R, = :y

(107)

(108)

(109}

(110)

and f,; = 0.0165, f,, = 20.5. The performance of this closure model was tested in flat plate
boundary layers. The results are contained in fig.1 to fig.8. The mean velocity in fig.1 is in
good agreement with the law of the wall. The turbulent Reynolds number and the damping
function f,(R.) in fig.2 and fig.3 prove that the boundary layer is fully developed. The
Reynolds stress components in fig.4 to fig.8 show the expected distributions with maximal

values in reasonable agreement with the experiments.
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2.3 Full second order closure model.

The development of the full second order closure was prepared in the first chapter which
contains the properties of all transport equations for second order moments derived from
series expansions with respect to wall distance. The results obtained with series expansions
are called growth laws since they describe in first or higher order the growth of correlations
with wall distance. The challenge is now to construct a closure model that satisfies all tensorial
and realizability conditions and the growth laws.

2.3.1 Closure model for the stress equations.

The closure model for the stress equations follows closely the model developed by Van-
dromme et al. (1983). The only difference is that the model (102) for the components of the

dissipation rate tensor is not used. The stress equations appear then according to chapter
2.9 as

9 : v a
(g7 + (o) 5 o) = =it S ooty Sl
RN (405) = 80sk) = Fy RN (Pas = 2605P) - 222D, 5 - 25, ,)
30c; =2, D(vg) | O va) w
~ 55 K Oz, + Oz g + ®ap)
0 , O(vgy, k 0
o 2 et 0052 i) — (o) (1)

where Poj3 and D, are defined in (99) and (100) respectively and the wall contribution
to the pressure correlations is given by (101). The low Reynolds number functions are all
established in chapter 2.2.

2.3.2 Closure model for the dissipation rate equations.

The transport equation for the dissipation rate tensor

) 9 OF
(a +<"’:«>a—7)(foﬂ) 37 — +Sc11,3+5 B+Saﬂ+sal3+saﬁ_Daﬁ (112)

requires closure for the turbulent flux contained in the total flux F,z, and the source terms
Saﬂ’ 53 3 Saﬂ’ S af and DG/’
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Model for the turbulent flux: This model follows the suggestion of Vandromme et al.
(1983) for the turbulent flux of the trace of the dissipation rate tensor

~ 8(faﬂ) k o a(€0ﬂ>
Fagy=v oz, +Ce</)>ngnn€<n(v7v6> Dzs (113)

The only modification is the use of the time scale (69) to improve the behaviour near the
wall. The value for the constant ¢, = 0.1 is consistent with the six-equation model. A more
sophisticated model was developed in chapter 1.3.2.

Model for the source S?,[,: The secondary production can be neglected near the wall
according to chapter 1.2.2.4.

Model for the source S3 5 The primary production is not of leading order near the wall
but varies like the closed production term Sc’m in the near wall region according to ch.1.2.2.5.
The present model utilizes this property and the analogy to the stress transport exploited
in the equation for the trace (106), where the high Re-number part of the model for the
difference between the leading terms having the character of a production term is modelled
proportional to the production of kinetic ernergy

~ Nva 0 €., , vy o(v
2% = o6, o + eo ] — e ol R ) Sl (wie) ok + () 52 (114

The constants are given by c¢¢; = 1.45 and ¢.3 = 1.0.

Model for the source term S 5: The pressure correlations were shown to be of leading
order near the wall for all dissipation rate components except €z, (see ch.1.2.2.9). They can
be split into diffusive and reditributive source terms (ch.1.2.1). The diffusive part is assumed
to be represented by the closure for the turbulent flux (113). The model for the redistributive
source is analoguous to the return to isotropy model for the stress transport equations. It is
given by

4 ~ € 2
Sap™ = cealp) T {€as) = Fbane) (115)
with ¢4 = 12.5.

Model for the destructive term D,z3: It was shown in chapter 1.3.4 that the high Re-
number model for the difference of primary production and viscous destruction becomes
singular as the wall is approached. Furthermore, the growth law for the viscous destruction
term D, 1mplies that a model similar to the high Re-number case

{€as)

Das=ca(p)

with a scalar time scale is impossible. It follows that a tensorial time scale m ust be con-
structed to conform with the growth law. The present closure is a composite expression
containing the high and the low Re-number models

k )2 O{€ay) Oepy)
(esc)

nyn
ngng e ailf,, 3.’B¢

Daﬁg‘cfﬂ (P)(l - fa(Rel))<
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€ nnglevs
+Cf‘2'2(/))ncrnﬁn-7n6(1 - fs(Ret))Z(f“,ﬁ) + Ce23 (P)fs(Ret)L'k(_."_)(eaﬁ) (116)
where the preliminary values for the constants are cc; = 0.32 - 1074, ce22 = 26.25, and
ce23 = 12.5. The low Re-number functions are set up as follows:

9 20.5
fu(Ret) = (1 — exp[—0.0165R,]) (1 - 7 ) (117)
et
where \/_
R, = ky
v
denotes the dimensionless wall distance and
fo(Ret) = tanh(0.004R,;) (118)
The turbulent Reynolds number is defined by
.2
Ret = k_
€V

2.3.3 Preliminary results for the complete second order closure.

The system of nine parabolic differential equations was tested in reduced form by pre-
scribing the profiles for mean velocity and the Reynolds stress components which were ob-
tained with the six equation model discussed in chapter 2.2. The numerical solution for the
remaining equations for the disssipation rate tensor was carried out and convergence was
achieved after a few hundred steps. The results are presented in fig.9 to fig.16. The figures
contain also as broken line the dissipation rate components deduced from the local relation

suggested by Launder and Reynolds (1983) and modified by Lai and So (1990)

2 ,

<€0{3)£§(1 - fu'(Ret))‘SaBe

v vy} + (vhvlinang + (vhvlInong + nangn.ng (vl v
+fw(Ret)e( a¥a) + ety inTs 3( Al - 776 {vvs) (119)
k 1+ ﬂnYng(ugvé)
where
ful Rea) = exp[~(ty

wldlet Xp 150

The dissipation rates in the figures are normalized with the wall variables v and u,

+ -
Gaﬂz



with u, = y/7w/p denoting the wall shear velocity. The symbols in the figures represent the
results of the numerical experiments carried out by Mansour, I{im and Moin (1988).

The component €}, in fig.9 (logarithmic scale) and fig.10 (linear scale) shows a negative
gradient near the wall which implies that the time scale

€ u(@ﬁ)z
T == =2 =
k k\ Oy

would change sign and the destructive term would become a production term violating real-
izability. The prediction of €] in the outer (fully turbulent) part of the flow field is too small
and the near wall part appears too large compared to the direct simulation, but the profile
shape is in good agreement with the numerical experiment. The component €, in fig.11 and
fig.12 reasonable agreement between the full second order closure and the direct simulation,
but the local relation of Launder and Reynolds overpredicts the component by a factor of
three. The prediction of the component €}, in fig.13 and fig.14 shows a similar behaviour as
the component €, in fig.9/10. The shear dissipation €}, in fig.15/16 shows overprediction by
the full second order closure and underprediction by the local relation near the wall whereas
the outer part is in good agreement with the direct simulation data.

2.3.4 Conclusions.

The results presented lead to several conclusions. It is clear from the theoretical develop-
ment that only the full second order closure offers the tools to construct the appropriate time
scales in the near wall region of a turbulent boundary layer. The growth laws for the various
correlations appearing in the stress and dissipation rate balances limit severely the model
expressions and indicate that composite models for the high and the low Reynolds number
regimes must be established. The model discussed in this chapter produces good results if
velocity and stress components are held fixed and this indicates that the model expressions
are consistent with the direct simulations. However, the stability of the closure needs to be
investigated and this part may lead to modifications of the present version of the full second
order closure. This part of the project is currently under way.
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